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a b s t r a c t

The Single-Allocation Ordered Median Hub Location problem is a recent hub model
introduced by Puerto et al. (2011) [32] that provides a unifying analysis of the class of hub
location models. Indeed, considering ordered objective functions in hub location models is
a powerful tool in modeling classic and alternative location paradigms, that can be applied
with success to a large variety of problems providing new distribution patterns induced
by the different users’ roles within the supply chain network. In this paper, we present a
new formulation for the Single-Allocation Ordered Median Hub Location problem and a
branch-and-bound-and-cut (B&B&Cut) based algorithm to solve optimally this model. A
simple illustrative example is discussed to demonstrate the technique, and then a battery
of test problems with data taken from the AP library are solved. The paper concludes that
the proposed B&B&Cut approach performs well for small to medium sized problems.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The importance of hub location models in the area of Supply Chain networks is shown by the number of references
published in the last years using different criteria to locate hubs, as for instance, minimizing the overall transportation
cost (sum) (see [4,6,10,11,13,15,21–26,34,38], among others), the largest transportation cost or the coverage cost
[5,8,18–20,29,36,37], as well as the surveys [2,7,9] and the references therein.

Recently, the Single Ordered Median hub location problem, introduced by Puerto et al. [32], has been recognized as a
powerful tool from a modeling point of view. The reason being that this model allows to distinguish the roles played by the
different parties in a hub-type supply chain network inducing new type of distribution patterns; see [14,16,17].

This formulation incorporates flexibility through rank dependent compensation factors, and it allows one to model
that the driving force in the supply chain is shared by the suppliers and the distribution system. Suppliers support the
transportation costs from the origin sites to the first hub and the distribution system supports the transportation cost from
the first hub to the destination sites. Actually, any origin–destination delivery path is composed of, atmost, two components:
(1) the subpath that goes from an origin site to the first access point (first hub) to the distribution system, and (2) the subpath
that links first hubs to final destinations. In addition, this last component is itself also divided, at most, in two parts: (2.1)
the inter hubs links and (2.2) the link from the last hub to the final destination.

Each one of the components of any origin–destination delivery path described above gives rise to a cost that is weighted
by different compensation factors depending on the role of the party that supports the cost. The costs associated with the
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inter-hub links have a fixed discount 0 < µ < 1 and the links between last-hub and the destination sites have another
discount factor 0 < δ < 1. We assume that the commodity of each origin is transported to a single (unique) first hub.
In addition, deliveries from the origin sites to the distribution system are scaled by rank dependent weights. This adds a
‘‘sorting’’-problem to the underlying hub location problem, making its formulation and solution much more challenging.
Hence, the objective is to minimize the total transportation cost of the flows between each origin–destination pair, routed
through at most two hubs, once we have applied rank dependent compensation factors on the transportation costs of the
origin–first hub links, and fixed scaling factors for the interhub and hub–final destination transportation costs.

The reader may note that apart from the classical median and center approaches to hub location problems, our analysis
opens very interesting new perspectives to be considered. Some of these new paradigms are the minimization of the
k-largest costs (k-centrum), the most centered costs (trimmed mean), the most extreme costs (anti-trimmed mean) and
the range of costs, as well as many other models without a specific name that may fit better to some real situations.
Moreover, this approach allows us to cope with actual requirements from nowadays logistics [30,35,39]. This methodology,
as mentioned in [16], introduces, as part of the model, the point of view of the member of the logistics network that is the
driving force of the planning process. Obviously, this gives rise to different problems that need new resolution methods
because for them there are no generic or ‘‘ad hoc’’ algorithmic approaches available.

In this paper, we analyze in depth the above discussed model trying to obtain a better knowledge and alternative ways
to solve it. More precisely, we will provide, first, a new formulation in the spirit of [28] where the number of variables has
been considerably reduced with respect to the one in [32]; second, several procedures for fixing variables (based on non
straightforward adaptations of the rationale of [32]), and new methods for computing lower and upper bounds, both, on
some variables and on the objective function value; and third, several families of valid inequalities to be incorporated in the
resolution process. From this analysis, wewill develop a branch-and-bound-and-cut algorithm that allows us to solve larger
instances than the ones solved in [32].

The rest of the paper is organized as follows: In Section 2 we recall the covering variable formulation of the Single
Allocation Hub Location problem that provided the best computational results in [32, Section 3]. Next, we give an alternative
formulation for this problem, proving the equivalence between them. Section 3 presents a new lower bound on the objective
value based on a related median hub problem, some variable fixing procedures and several families of valid inequalities. In
Section 4, two additional combinatorial lower bounds and four different ways to compute upper bounds are presented; this
section endswith the description of the branching scheme. Section 5 reports the computational analysis of themethodology
developed in previous sections. Along the paper some examples have been included to illustrate the different results and
models. The paper ends with some conclusions.

2. Model and formulation

Let A denote a given set of N client sites and identify these with integers 1, . . . ,N . Each site is collecting or gathering
some commodity that must be sent to the remaining sites. Letwjm ≥ 0 be the amount of commodity to be supplied from the
jth to the mth site for all j,m ∈ {1, . . . ,N} and let Wj =

N
m=1wjm. In the following, we assume without loss of generality

that the set of candidate sites for establishing hubs is identical to the set of sites A. Let cjm ≥ 0 denote the unit cost of sending
commodity from site j to sitem (not necessarily satisfying the triangular inequality). We assume that cjj = 0, ∀j = 1, . . . ,N
(free self-service). Let p ≤ N be the number of hubs to be located and X ⊂ Awith |X | = p denote a feasible set of candidate
sites. A solution for the problem is a feasible set of candidate sites X , plus a set of paths connecting pairs (flow patterns)
of sites j, m for all j,m ∈ {1, . . . ,N} in such a way that each path traverses at least one and no more than two hubs from
X . To be more precise, (i) if the origin site j and the destination site m are not hubs, the flow must go through one or two
intermediate hubs; (ii) if either the origin or the destination sites are hubs, the flow between them can be either directly
sent or sent through an additional hub; and (iii) if both origin and destination sites are hubs, the flowmust go directly from
the origin to the destination.

In addition, this model compensates origin site–first hub transportation costs by using parameters λ = (λ1, . . . , λN).
These scaling factors will be assigned to the origins depending on the order of the sequence of transportation costs of the
commodity with the same origin to the first hub (see [3,27,28,31] for different ordered median location models). Indeed, if
a solution sends the commodity from the origin site j via a first hub k and this delivery cost, namely Wjcjk, were ranked in
the ith position among these type of costs then this term would be scaled by λi, i.e. the corresponding objective function
component would be λiWjcjk. In addition, we also consider a compensation parameter 0 < µ < 1 for the deliveries between
hubs and another parameter 0 < δ < 1,µ < δ, for the deliveries between hubs and final destination sites. These parameters
may imply that, at times, using a second hub results in a cheaper connection than going directly from the first hub to the
final destination.

Observe that depending on the choices of the λ-vector we can obtain different criteria to account for the costs from
the origins to their first hubs in the objective function (for instance, if λ = (0, . . . , 0, 1, k. . . , 1) were considered, the
first component of the objective function would be the sum of the k-largest costs—k-centrum) usually providing different
solutions or different allocation patterns for problems with different λ, even though the optimal solution gets the same set
of open hubs, see [32] for further details. In this section we recall the formulation of the Single Allocation Ordered Median
Hub location problem based on covering variables (see [32] for further details). In order to do that, let us denote by ĉjk the
cost of the overall flow sent from the origin site j if it were delivered via the first hub k, i.e. ĉjk := cjkWj, j, k = 1, . . . ,N .
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Next, let G be the number of different elements of the cost sequence (ĉjk) for any j, k = 1, . . . ,N . Then, we can sort the
different values of this sequence in increasing order:

ĉ(1) := 0 < ĉ(2) < · · · < ĉ(G) := max
1≤j,k≤N

{ĉjk}.

Given a feasible solution, we use this ordering to perform the sorting process of the allocation costs with the following
covering variables (i = 1, . . . ,N and h = 1, . . . ,G):

ūih :=


1, if the i-th smallest allocation cost is at least ĉ(h),
0, otherwise. (1)

Clearly, the i-th smallest allocation cost is equal to ĉ(h) if and only if ūih = 1 and ūi,h+1 = 0.
In addition, we define the following set of variables:

rjk =


1, if the commodity sent from origin site j goes first to the hub k,
0, otherwise. (2)

xkℓm = flow that goes through a first hub k and a second hub ℓwith destinationm,

with j, k, ℓ,m = 1, . . . ,N . Since we assume free self service and non-negative costs, the above definition implies that site
k is opened as a hub if the corresponding variable rkk = 1. Hence, the formulation of the model is:

min
N
i=1

G
h=2

λi(ĉ(h) − ĉ(h−1))ūih +

N
k=1

N
ℓ=1

N
m=1

xkℓm(µckℓ + δcℓm) (3)

s.t.
N

k=1

rjk = 1, ∀j = 1, . . . ,N (4)

N
j=1

rjk ≤ Nrkk, ∀k = 1, . . . ,N (5)

N
ℓ=1

xkℓm =

N
j=1

rjkwjm, ∀k,m = 1, . . . ,N (6)

xkℓm ≤ (1 − rmm)

N
j=1

wjm ∀k, ℓ,m = 1, . . . ,N, ℓ ≠ m (7)

N
ℓ=1

N
m=1

xkℓm ≤ rkk
N
j=1

Wj, ∀k = 1, . . . ,N (8)

N
k=1

N
m=1

xkℓm ≤ rℓℓ
N
j=1

Wj, ∀ℓ = 1, . . . ,N (9)

N
k=1

rkk = p (10)

N
i=1

ūih =

N
j=1

N
k=1

ĉjk≥ĉ(h)

rjk, ∀h = 1, . . . ,G (11)

ūih ≥ ūi−1h, ∀i = 2, . . . ,N, h = 1, . . . ,G (12)

ūih, rjk ∈ {0, 1}, xkℓm ≥ 0, ∀i, j, k, ℓ,m = 1, . . . ,N, h = 1, . . . ,G. (13)

The objective function (3) accounts for the weighted sum of the three components of the shipping cost, namely origin site to
first hub, betweenhubs connections and last hub–final destination site. The first block of shipping costs is accounted after the
compensation process using the lambda parameters, i.e.

N
i=1
G

h=1 λi · (ĉ(h)− ĉ(h−1)) · ūih. In addition, the second and third
blocks of delivery costs, scaled with the µ and δ parameters, respectively, can be stated as:

N
k=1

N
ℓ=1

N
m=1 xkℓm(µckℓ +

δcℓm).
Constraints (4) ensure that the flow from the origin site j is associated with a unique first hub. Constraints (5) ensure that

one origin may be allocated to a specific first hub only if it is open. Observe that this family of constraints can be presented
in a disaggregated form, i.e. rjk ≤ rkk,∀j, k = 1, . . . ,N . However, the computational experience in [32] showed that using
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the disaggregated form provided worse computational running times than using the original constraints (5). Constraints (6)
are flow conservation constraints and they ensure that the flow that enters any hub k with final destination m is the same
that the flow that leaves hub k with destination m. Constraints (7) ensure that if the final destination site is a hub, then
the flow goes at most through one additional hub. Note that the family of constraints (7) are redundant whenever the cost
structure satisfies the triangular inequality, however they are useful in reducing solution times (see [32] for further details).
Constraints (8) and (9) establish that the intermediate nodes in any origin–destination path should be open hubs. Constraint
(10) fixes the number of hubs to be located. Constraints (11) state that the number of allocationswith a cost at least ĉ(h)must
be equal to the number of sites that support shipping costs to the first hub greater than or equal to ĉ(h). Finally, constraints
(12) are a group of sorting conditions on the ūih-variables.

Example 2.1. To illustrate the formulation (3)–(13) we consider the following data. Let A = {1, . . . , 10} be a set of sites and
assume that we are interested in locating p = 2 hubs. Let the cost and flow matrices be as follows:

C =



0 14 15 16 15 9 1 5 18 11
5 0 7 2 19 16 20 1 2 17
16 5 0 7 1 19 20 8 12 20
12 1 10 0 13 1 15 16 4 19
1 9 9 15 0 2 8 13 20 9
8 10 16 8 4 0 2 2 2 13
10 15 3 15 12 11 0 6 1 9
6 5 13 16 6 12 17 0 12 12
12 18 8 10 9 12 14 5 0 3
8 19 17 3 14 16 20 19 8 0


,

W =



0 15 2 8 11 2 13 20 6 14
19 0 1 16 20 7 16 16 9 2
3 9 0 3 11 16 17 6 3 2
7 2 5 0 14 5 13 10 2 9
15 4 20 4 0 1 13 17 11 15
12 4 7 11 18 0 20 10 15 12
14 2 11 18 2 15 0 14 8 17
7 15 17 20 7 9 8 0 9 12
11 7 6 4 18 14 12 16 0 7
18 18 19 20 15 5 7 14 7 0


.

Therefore, ĉ(·), the sorted vector of ĉ , is in our case
ĉ(·) = [0, 67, 70, 91, 100, 101, 106, 200, 212, 218, 268, 285, 303, 350, 369, 436, 455, 475, 490, 520, 530, 560, 606, 624,
670, 742, 760, 800, 804, 819, 840, 855, 871, 872, 900, 909, 950, 984, 1001, 1005, 1010, 1072, 1090, 1111, 1120, 1140,
1212, 1248, 1273, 1274, 1300, 1330, 1352, 1365, 1400, 1417, 1456, 1500, 1515, 1638, 1664, 1696, 1710, 1722, 1744,
1768, 1802, 1968, 2000, 2014, 2091, 2120, 2337, 2460].
Hence, G = 74. Let λ = (0, 0, 1, 1, 0, 0, 1, 1, 1, 0), µ = 0.7 and δ = 0.9. Running XPRESS in this example the optimal
solution opens hubs 4 and 6. The allocation of origin sites to first hub is given by the following values of the r-variables (see
Fig. 1):

r1,6 = r2,4 = r3,4 = r4,4 = r5,6 = r6,6 = r7,6 = r8,4 = r9,4 = r10,4 = 1.

Analogously, the allocation of first hubs to final destinations are given by the values of the non null x variables. Thus, the
flows considering as first hubs 4 and 6 are (see Fig. 2 for a graphical representation of the delivery paths):
x4,4,2 = 51, x4,4,3 = 48, x4,4,4 = 63, x4,6,1 = 65, x4,6,5 = 85, x4,6,6 = 56, x4,6,7 = 73, x4,6,8 = 62, x4,6,9 = 30, x4,6,10 =

32; x6,4,2 = 25, x6,4,4 = 41, x6,6,1 = 41, x6,6,3 = 40, x6,6,5 = 31, x6,6,6 = 18, x6,6,7 = 46, x6,6,8 = 61, x6,6,9 = 40,
x6,6,10 = 58.

Moreover, the covering variables ūih are given below. Due to their structure, we only report for each i the last 1 and the
first zero values since they characterize the remaining values:

i = 1 → ū1,1 = 1, ū1,2 = 0 i = 2 → ū2,1 = 1, ū2,2 = 0 i = 3 → ū3,8 = 1, ū3,9 = 0
i = 4 → ū4,9 = 1, ū4,10 = 0 i = 5 → ū5,15 = 1, ū5,16 = 0 i = 6 → ū6,19 = 1, ū6,20 = 0
i = 7 → ū7,30 = 1, ū7,31 = 0 i = 8 → ū8,37 = 1, ū8,38 = 0 i = 9 → ū9,44 = 1, ū9,45 = 0
i = 10 → ū10,61 = 1, ū10,62 = 0.

Hence, the overall cost of this solution is
N
i=1

G
h=2

λi(ĉ(h) − ĉ(h−1))ūih +

N
k=1

N
ℓ=1

N
m=1

xkℓm(µckℓ + δcℓm) = 3292 + 4523.5 = 7815.5.
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Fig. 1. Allocations of origin sites to hubs in Example 2.1.

Fig. 2. Allocations from hubs 4 (left) and 6 (right) as first hubs in Example 2.1.

2.1. Improved reformulations

The rationale of the above formulation can be further strengthen for important particular cases of the discrete ordered
median hub location problem. In the following, we show this reformulation that is based on taking advantage of sequences
of repetitions in the λ-vector (see [28] for a similar reformulation applied to regular discrete location).

We observe that for λ-vectors with sequences of repetitions, as for instance the center, k-centrum, trimmed means or
median among others,many variables used in formulation (3)–(13) are not necessary and some others can be glued together.

Since we have assumed free self-service, we have that the p smallest transportation cost from the origin to the first
hubs are 0, i.e. the first p components of the λ-vector are multiplied by 0. Therefore, in order to simplify the problem we
can remove these p first components. Let λ̃ = (λ̃1, . . . , λ̃N−p) := (λp+1, . . . , λN). Then, let I be the number of blocks of
consecutive equal non-null elements in λ̃ and define the vectors:

1. γ = (γ1, . . . , γI), being γi, i = 1, . . . , I the value of the elements in the i-th block of repeated elements in λ̃.
2. α = (α1, . . . , αI , αI+1), being αi with i = 1, . . . , I , the number of zero entries between the (i − 1)-th and i-th blocks of

positive elements in λ̃ and αI+1 the number of zeros, if any, after the I-th block of non-null elements in λ̄. For notation
purposes we define α0 = 0.

3. β = (β1, . . . , βI), being βi, i = 1, . . . , I the number of elements in the i-th block of non-null elements in λ̃. For the sake
of compactness, let β0 = βI+1 = 0.

With the above definitions we are ready to define the new set of variables of our reformulation. For i = 1, . . . , I and
h = 1, . . . ,Gwe set

uih =

1 if the


i

j=1

αj +

i−1
j=1

βj + 1


-th allocation cost is at least ĉ(h),

0 otherwise.

(14)

vih = number of allocations in the i-th block


between positions

i
j=1

αj +

i−1
j=1

βj + 1 and
i

j=1

(αj + βj)


that are at least ĉ(h). (15)
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Table 1
Comparison of formulations ‘‘covering’’ and ‘‘improved’’ in Examples 2.1 and 2.2.

Time Nodes GAP Variables
Cont. Binary Integer

Covering 1.911 107 38.52 1000 840 0
Improved 0.865 81 47.89 1000 248 148

Using the above, the reformulation of the problem is as follows:

min
I

i=1

G
h=2

γi(ĉ(h) − ĉ(h−1))vih +

N
k=1

N
ℓ=1

N
m=1

xkℓm(µckℓ + δcℓm) (16)

s.t. Constraints: (4)–(10), (17)

I
i=1

αiuih +

I
i=1

vih + αI+1 ≥

N
j=1

N
k=1

ĉjk≥ĉ(h)

rjk, ∀h = 1, . . . ,G (18)

uih ≥ ui−1h, ∀i = 2, . . . , I, h = 1, . . . ,G (19)

βi−1uih ≥ vi−1,h, ∀i = 2, . . . , I, h = 1, . . . ,G (20)

vih ≥ βiuih, ∀i = 1, . . . , I, h = 1, . . . ,G (21)

uih ∈ {0, 1}, vih ∈ Z ∩ [0, βi], ∀i = 1 . . . , I, h = 1, . . . ,G (22)

rjk ∈ {0, 1}, xkℓm ≥ 0, ∀j, k, ℓ,m = 1, . . . ,N. (23)

Clearly, the objective function (16) is a reformulation of (3) taking advantage of the u-, v-variables and the vector γ .
Constraints (18) ensure that the number of sites that support a shipping cost to the first hub greater than or equal to ĉ(h) is
either equal to the number of allocations with a cost at least ĉ(h) whenever vIh > 0 or less than or equal to αI+1 otherwise.
Constraints (19) are sorting constraints on the u-variables similar to constraints (12). Constraints (20)–(21) provide upper
and lower bounds on the v-variables depending on the values of u-variables.

We observe that for those cases where βi = 1, then vih = uih and this set of constraints would be added to reinforce
the formulation. Moreover, the main difference of the above formulation and (3)–(13) is that all ūih variables associated
with blocks of zero λ-values are removed and those associated with each block of non-null λ values are replaced by 2 × G
variables. Therefore, overall we reduce the number of variables by (N − 2I)× G.

Example 2.2. To illustrate the above reformulation, we consider the data in Example 2.1. Clearly, we have that λ̃ = (1, 1, 0,
0, 1, 1, 1, 0). The number of different blocks of non-null elements in λ̃ is I = 2. The repeated value in the first block is γ1 = 1
and in the second block γ2 = 1. Thus, γ = (1, 1). The number of repetitions in each block is given by β = (2, 3) being
β0 = β3 = 0. This means that the first and second blocks have two and three elements, respectively. Finally, the number of
zeros preceding each block of non null elements is given by α = (0, 2, 1).

The open hubs and the allocations of sites to open hubs in the optimal solution for this reformulation coincide with those
described in Example 2.1 and therefore are omitted. Table 1 shows a comparison of both formulations for Example 2.1.
Columns Time, Nodes and GAP report, respectively, the CPU time, the number of the nodes of the Branch and Bound
tree and the GAP at the root node when solving both formulations using XPRESS. In addition, the columns Cont., Binary,
Integer give, respectively, the number of continuous, binary and integer variables of both formulations. We highlight that
improved formulation provides slightly worse GAP although its number of variables is considerably less than covering
formulation.

Next proposition states the equivalence between formulation (3)–(13) and (16)–(23).

Proposition 2.1. Let (r, x, ū) be a solution of (3)–(13) then there exists a solution (r, x, u, v) for (16)–(23) such that their
objective values are equal. Conversely, if (r, x, u, v) is a feasible solution for (16)–(23) then there exists a solution (r, x, ū) for
(3)–(13) having the same objective value.

Proof. Let (r, x, ū) be a feasible solution of (3)–(13). Then we define ui0,h and vi0,h for i0 = 1, . . . , I , h = 1, . . . ,G, as
follows:ui0,h = 1, if

N
i=1

ūih ≥ βi0 +

I+1
i=i0+1

(αi + βi)

ui0,h = 0, otherwise.
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vi0,h = βi0 , if
N
i=1

ūih ≥ βi0 +

I+1
i=i0+1

(αi + βi)

vi0,h =

M
i=1

ūih −

I+1
i=i0+1

(αi + βi), if
I+1

i=i0+1

(αi + βi) <

N
i=1

ūih < βi0 +

I+1
i0+1

(αi + βi)

vi0,h = 0, otherwise.

These variables make constraints (18) active for any h = 1, . . . ,G such that
N

i=1 ūih ≥ αI+1; otherwise this inequality
is strict. Moreover, constraints (19)–(21) also hold. Therefore (r, x, u0, v0) is a feasible solution of (16)–(23).

Conversely, let (r, x, u, v) be a feasible solution of (16)–(23). Then, we define ūi0,h for i0 = 1, . . . ,N , h = 1, . . . ,G as
follows. For N − i0 ≥ αI+1:ūi0,h = 1, if

I
i=1

(αiuih + vih)+ αI+1 ≥ N − i0 + 1

ūi0,h = 0, otherwise.

If N − i0 < αI+1 then
ūi0,h = 1, if

N
j=1

N
k=1

ĉjk≥ĉ(h)

rjk ≥ N − i0 + 1

0, otherwise.

Observe that the variables above defined satisfy constraints (11) and (12). Thus, (r, x, ū0) is a feasible solution of (3)–(13).
In addition, by construction, in both cases the solutions provide the sameobjective value. Therefore the result follows. �

3. Properties

We start with a general property of ordered median functions that allows to derive lower bounds. In order to describe
that property we need to introduce some notation. For any s = 1, . . . ,N , let js be the index such that

I+1
j=js

(αj + βj) < s ≤

I+1
j=js−1

(αj + βj). (24)

Note that the above inequality means that s is a position, with respect to the components of the λ̃-vector, that corresponds
either to an element in the (js − 1)-th block or to an element between the (js − 2)-th and the (js − 1)-th blocks of non-null
elements. Let Ks =

I+1
j=js(αj + βj)+ βjs−1, i.e. Ks accounts for the number of components of the λ̃-vector starting from the

(js − 1)-th block of non-null elements.
Our first property states a lower bound on any feasible solution of the problem based on a related median objective

function, for suitable choices of weights.

Proposition 3.1. For any s ∈ {1, . . . ,N} and S ⊆ {1, . . . ,N} with |S| = s, let θ ∈ RN
+
be such that

I
j=js

βjγj +


s −

I+1
j=js

(αj + βj)


γjs−1 ≥


j∈S

θj, if s ≤ Ks and js < I + 1

(s − αI+1)γI ≥


j∈S

θj, if s ≤ Ks and js = I + 1

I
j=js−1

βjγj ≥


j∈S

θj, otherwise, s > Ks.

(25)

Then
I

i=1
G

h=2 γi(ĉ(h) − ĉ(h−1))vih ≥
N

j=1
N

k=1 θjĉjkrjk, for any feasible solution of (16)–(23).

Proof. Let (r, x, u, v) be a feasible solution of (16)–(23). Then, it exists a permutation π such that:

1.
N

k=1 ĉπ(i)krπ(i)k ≤
N

k=1 ĉπ(i+1)krπ(i+1)k, for all i = 1, . . . ,N − 1, and
2.
I

i=1
G

h=2 γi(ĉ(h) − ĉ(h−1))vih =
N

i=1 λi
N

k=1 ĉπ(i)krπ(i)k.
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Next, clearly follows that condition (25) is equivalent, in the original representation of the λ-weights, to:


i∈S θi ≤N
i=N−s+1 λi, ∀s ∈ {1, . . . ,N} and S ⊆ {1, . . . ,N}, |S| = s. Therefore, we have

N
i=1

λi

N
k=1

ĉπ(i)krπ(i)k =

N
i=1


N

ℓ=N−i+1

λℓ


N

k=1

ĉπ(N−i+1)krπ(N−i+1)k −

N
k=1

ĉπ(N−i)krπ(N−i)k



≥

N
i=1


N

ℓ=N−i+1

θπ(ℓ)


N

k=1

ĉπ(N−i+1)krπ(N−i+1)k −

N
k=1

ĉπ(N−i)krπ(N−i)k



=

N
i=1

θπ(i)

N
k=1

ĉπ(i)krπ(i)k

=

N
j=1

N
k=1

θjĉjkrjk. �

The above proposition gives us a new lower bound on the solution of (16)–(23) based on solving a relaxation of a classical
hub location problemwith additive weights for suitable choices of θ . The readermay note that in the case of non-decreasing
λ-weights one can always set θi =

1
N

N
j=1 λj for all i = 1, . . . ,N as a valid additive weight for the above lower bound on

Proposition 3.1. Another suitable choice for the vector θ is θ = λ. The bound obtained by the above methodology will be
called LB1(θ). In our case, we have used it for solvingmedian hub location problemswith θi =

1
N

N
j=1 λj for all i = 1, . . . ,N .

This bound has proven to be helpful in the cases of median, k-centrum and center. We have also observed that Median
problems are particularly easy since, in general, these problems are solved in the root node by the lower bound LB1. From
an implementation point of view, we obtain the value of this bound by solving, with the XPRESS solver, the classical hub
location problem using the formulation (16)–(23), where the constraints (18)–(21) have been removed.

3.1. Variable fixing

This section addresses the description of some preprocessing steps that we propose to reduce the size of our improved
formulation. Due to the definition of the variables in this formulation, one can expect that many u-and-v-variables in the
right hand part of the matrix of u-and-v-variables will take value 0 in the optimal solution. Indeed, uih = 0 means that thei−1

j=1(αj + βj) + 1-th sorted allocation cost is less than ĉ(h) which is very likely to be true if h is sufficiently large and i is
perhaps not that large. The same type of arguments also suggests that onemay expect that uih = 1 whenever i is large and h
is small to medium size because this would mean that the

i−1
j=1(αj + βj)+ 1-th sorted allocation cost would not have been

done at cost less than ĉ(h). Note that an analogous strategy, thatwewill explain in detail later, applies to the v-variables since
their interpretation is similar. With these strategies, the size of the formulation could be reduced if some (hopefully many)
of these u-and-v variables were fixed beforehand. In this subsection we describe a number of variable fixing possibilities
for the set of u-and-v-variables which are useful in the overall solution process. These variable fixing procedures are based
on non straightforward adaptations of some arguments already used in [32] for a different formulation. The reader should
note that the preprocessing phase developed in this paper also obtains new upper bounds on the v variables.

First of all, since cjj = 0 ∀j = 1, . . . ,N , it is clear that ui1 = 1, vi1 = βi, ∀i = 1, . . . , I . Moreover, whenever ĉjk ≠ 0 if and
only if j ≠ k then we can also fix ui2 = 1, vi2 = βi, ∀i = 1, . . . , I.

3.1.1. Fixing u-and-v-variables to their upper bound
In order to fix uih-and-vih-variables to their upper bound for i = 1, . . . , I , h = 1, . . . ,G, we will deal with an auxiliary

problem that maximizes the number of origin–first hub allocations satisfying ĉjk ≤ ĉ(h−1). Let

zjk =


1, if origin site j is assigned to hub k
0, otherwise.

Using these variables, the formulation of this problem is:

max H1h :=

N
j=1

N
k=1

zjk

s.t. zjkĉjk ≤ ĉ(h−1), ∀j, k = 1, . . . ,N
N

k=1

zjk ≤ 1, ∀j = 1, . . . ,N

zjk ≤ yk, ∀j, k = 1, . . . ,N
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N
k=1

yk ≤ p,

zjk, yk ∈ {0, 1}, j, k = 1, . . . ,N.

If H1h is the optimal value of problem above, since there are N origin–first hub allocations, the number of allocations
satisfying ĉjk ≥ ĉ(h) must be necessarily greater than or equal to N − H1h + 1. Thus, let us denote by i0 ∈ {1, . . . , I}
the index such that

p +

i0−1
j=1

(αj + βj) < H1h ≤ p +

i0
j=1

(αj + βj).

Then, we have that in any feasible solution of the problem:
uih = 1, vih = βi, i = i0, . . . , I, if H1h ≤ p + αi0 +

i0−1
j=1

(αj + βj)vi0h ≥ p +

i0
j=1

(αj + βj)− H1h,

uih = 1, vih = βi, i = i0 + 1, . . . , I,

 otherwise.

It is worth noting that for any column h in the two cases above, we fix u variables for i = i0 +1, . . . , I . Therefore, the greater
the value of I the larger the number of fixed variables.

Another procedure to fix u-variables to 1 is the following. Assume that ui1,ℓ = 0 for a fixed i1 ∈ {1, . . . , I} and
ℓ ∈ {1, . . . ,G}. Let S(ℓ) = {j : mink(≠j)=1,...,N ĉjk ≥ ĉ(ℓ)} be the set of sites such that their smallest allocation costs to a
first hub is at least ĉ(ℓ). Then we have

N − p −

i1
i=1

αi −

i1−1
i=1

βi ≥

I
i=1

αiuiℓ +

I
i=1

viℓ + αI+1 ≥

N
j=1

N
k=1

ĉjk≥ĉ(ℓ)

rjk ≥ |S(ℓ)| − p. (26)

Note that the first inequality follows from (19) to (20) together with the information that ui1ℓ = 0. Themiddle inequality
is (18). Finally, the last inequality says that the number of allocations that are at least ĉ(ℓ) must be greater than or equal to
the number of sites whose smallest allocation cost is at least ĉ(ℓ) minus the at most p potential self-allocations. From (26) it
follows that a solution with ui1,ℓ = 0 can be feasible only if

N −

i1
i=1

αi −

i1−1
i=1

βi ≥ |S(ℓ)|.

If this inequality fails to hold then ui1ℓ = 1.

3.1.2. Fixing u-and-v-variables to 0
Under a similar rationale to the one used in the previous section, we try to fix as many uih-and-vih-variables to 0 as

possible, for i = 1, . . . , I and h = 1, . . . ,G. In this case, we deal with an auxiliary problem that maximizes the number of
origin–first hub allocations satisfying ĉjk ≥ ĉ(h).

max H2h :=

N
j=1

N
k=1

zjk

s.t. ĉjk ≥ zjkĉ(h), ∀j, k = 1, . . . ,N
N

k=1

zjk ≤ 1, ∀j = 1, . . . ,N

zjk ≤ yk, ∀j, k = 1, . . . ,N
N

k=1

yk ≤ p,

yk, zjk ∈ {0, 1}, ∀j, k = 1, . . . ,N.

Therefore, if H2h is the optimal value of problem above, it means that there are no feasible solutions of the problem with
less than N − H2h allocations done at a cost at most ĉ(h). Let 1 ≤ i2 ≤ I be the index such that

p +

i2−1
j=1

(αj + βj) < N − H2h ≤ p +

i2
j=1

(αj + βj).
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Thus, in any feasible solution of the problem we have that:

uih = 0, vih = 0, i = 1, . . . , i2 − 1, if N − H2h ≤ p +

i2
j=1

αj +

i2−1
j=1

βjui2,h = 0, vi2h ≤ p +

i2
j=1

(αj + βj)− (N − H2h),

uih = 0, vih = 0, i = 1, . . . , i2 − 1,

 otherwise.

Note that whenever N − H2h = p then there is nothing to fix and therefore no variables are set to zero in column h. We
also point out, that analogously to the case of fixing variables to their upper bound, the greater the value of I the larger the
number of variable fixed to zero.

3.2. Valid inequalities

This section is devoted to describe several families of valid inequalities of this problem that help in solving the problems
and shed light on the structure of its polyhedral description. It is worth mentioning that with the exception of the families
of inequalities (27), (28), (33) and (34) the rest are new and they have not been used before.

First, we present a family of valid inequalities that are a straightforward consequence of the definition of the u-and-v-
variables, but that help a lot in solving the problem. This first family is:

uih ≥ ui,h+1, i = 1, . . . , I, h = 1, . . . ,G − 1, (27)

vih ≥ vi,h+1, i = 1, . . . , I, h = 1, . . . ,G − 1. (28)

Let us consider two u-variables, namely ui0h0 and ui1h1 with i0 ≤ i1 and h0 < h1. Then, it is clear that the number of allocations
that aremadewith allocation costs ĉ(h0) ≤ ĉjk ≤ ĉ(h1) must be less than or equal to the sum of the allocation variables whose
costs are in the range of those values. This can be written for the u-variables as:

βi0 +

i1−1
i=i0+1

(αi + βi)+ αi1


(ui0h0 − ui1,h1+1) ≤


ĉ(h0)≤ĉjk≤ĉ(h1)

rjk, ∀i0 ≤ i1, h0 < h1, (29)

and for the entire range of u and v variables as:

I
i=1

(vih0 − vi,h1+1)+ αi+1(uih0 − ui+1,h1+1) ≤


ĉ(h0)≤ĉjk≤ĉ(h1)

rjk, ∀i0 ≤ i1, h0 < h1. (30)

The third set of valid inequalities states that for any subset S of s origin sites, the number of assignments whose allocation
costs are done at a costs greater than or equal to ĉ(h) cannot be greater than the number of unresolved allocations among
those assigned at the s largest costs. In order to represent these inequalities, we use the indexes js and Ks defined in (24).
Now, we distinguish two cases depending on the value of Ks:

1. If js < I + 1:


j∈S

N
k=1

ĉjk≥ĉ(h)

rjk ≤



I
j=js

(αjujh + vjh)+


s −

I
j=js

(αj + βj)


, if s < Ks,

αI+1 +

I
j=js

(αjujh + vjh)+ vjs−1,h, if s = Ks,

αI+1 +

I
j=js

(αjujh + vjh)+ vjs−1,h + (s − Ks)ujs−1,h, otherwise, s > Ks.

(31)

2. If js = I + 1:


j∈S

N
k=1

ĉjk≥ĉ(h)

rjk ≤

s, if s < Ks,
αI+1 + vIh, if s = Ks,
αI+1 + vIh + (s − Ks)uIh, otherwise, s > Ks.

(32)

To separate the above inequalities for a given fractional solution (r∗, x∗, u∗, v∗), a column h and a size swesolve the following
subproblem:
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max
N

j,k=1|ĉjk≥ĉ(h)

r∗

jkzj

s.t.
N
j=1

zj = s

zj ∈ {0, 1}.
We observe that this problem can be solved easily by inspection. Indeed, we simply choose s non-repeated indices j such
that r∗

jk are the greatest elements in the set {r∗

jk : j, k = 1, . . . ,N, ĉjk ≥ ĉ(h)} and set zj = 1 for those indices and zj = 0
otherwise.

The fourth family of valid inequalities state disjunctive implications on the origin–first hub allocation costs. The first one
ensures that either origin site j is allocated to a first hub at a cost of at least ĉ(h) or there is an open hub k such that ĉjk < ĉ(h).

N
k=1:ĉjk≥ĉ(h)

rjk +

N
k=1:ĉjk<ĉ(h)

rkk ≥ 1, ∀j = 1, . . . ,N, h = 1, . . . ,G. (33)

Swapping the roles of the rjk-and rkk-variables in the above inequality, we obtain:
N

k=1:ĉjk≥ĉ(h)

rkk +

N
k=1:ĉjk<ĉ(h)

rjk ≥ 1, ∀j = 1, . . . ,N, h = 1, . . . ,G. (34)

For the next sets of valid inequalities we need some additional notation. Given h∗
∈ {1, . . . ,G}, let n(h∗) be the number of

feasible allocations that could be done at a cost ĉ(h∗). Observe that it means the number of all pairs (j, k), such that, ĉjk = ĉ(h∗)

and rjk has not been fixed to 0 yet (either by the variable fixing process or by the branching in the branch-and-bound tree),
i.e.

n(h∗) = |{(j, k) : ĉjk = ĉ(h∗) and r∗

jk not fixed to 0}|. (35)
Clearly, if n(h∗) = 0 then no possible allocations can be done at this cost, from the current feasible solution, and thus
columns h∗ and h∗

+ 1 must be equal for u-and-v-variables.
uih∗ − ui,h∗+1 ≤ 0, vih∗ − vi,h∗+1 ≤ 0, ∀i = 1, . . . , I. (36)

Next, we observe that the number of allocations that can be done at a cost exactly of ĉ(h∗) is at most n(h∗). Therefore, if
an allocation is made in column h∗ and it is ranked at position ℓ, clearly no other allocation at cost ĉ(h∗) can be ranked at
position ℓ+ n(h∗) since it would mean that at least n(h∗)+ 1 allocations would have been made at a cost ĉ(h∗) which is not
possible. This fact inspires the next set of valid inequalities. Setm0 = 1 and

mi+1 = min


i′ :

i′
j=mi+1

(αj + βj) ≥ n(h∗),mi < i′ ≤ I


.

By convention, mi+1 = +∞ if
I

j=mi+1(αj + βj) < n(h∗) (note that if mi = +∞ then mj = +∞ for all j > i). For the ease
of notation, let Im = max{i : mi < +∞}. It is clear that mi is the number of elements of the minimum number of complete
consecutive blocks (non-null) that one has to add to the positionmi−1 to go beyond ofmi−1 + n(h∗) positions.

Then, between all the differences of variables that are spaced at least n(h∗) ordered positions at most one can attain the
upper value. Hence, we have

Im
i=m0

(vmi,h∗ − vmi,h∗+1)

βmi

≤ 1, h∗
= 1, . . . ,G − 1, (37)

or equivalently, in terms of the u-variables:
Im

i=m0

(umi,h∗ − umi,h∗+1) ≤ 1, h∗
= 1, . . . ,G − 1. (38)

3.3. A reformulation of the problem at the nodes where all location variables are fixed

Assume that a complete set of hubs has been opened, i.e. we have a set X ⊆ {1, . . . ,N}, such that, |X | = p and rkk = 1
for any k ∈ X and thus rkk = 0 for all k ∉ X . This information simplifies the formulation of Problem (16)–(23) since the
knowledge of which hubs are operating at that solution leads to have a compact form of the second block of costs, i.e. those
that correspond to hub–hub, hub–final destination deliveries.

Indeed, depending on the character of the pair origin–final destination site we can easily compute the value of the
minimum second block delivery cost. The reader easily understands that, for instance if the origin site j and the final
destination m are not hubs, i.e. rjj = rmm = 0, the minimum cost of delivering the flow via the first hub k is given by
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the minimum among all potential choices for the second hub in X or the direct delivering, namely minℓ∈X (µckℓ + δcℓm)wjm.
Considering all possible subcases the formula below gives us, ζjkm(X), the minimum second block cost of delivering flow
from the origin site j via first hub kwith final destinationm.

ζjkm(X) :=


min
ℓ∈X
(µckℓ + δcℓm)wjm if rjj = 0, rkk = 1, rmm = 0

min
ℓ∈X
(µckℓ + δcℓm)wjm if rjj = 1, j = k, rmm = 0

µcjmwjm if rjj = 1, j = k, rmm = 1
µckmwjm if rjj = 0, rkk = 1, rmm = 1,
+∞ otherwise.

(39)

From the above equations, we obtain, c̃jk(X), the minimum second block cost of all the flow sent from the origin site j via
hub k ∈ X in the conditions described above.

c̃jk(X) :=

N
m=1

ζjkm(X), ∀j, k = 1, . . . ,N. (40)

Note that when j ∈ X , i.e. j is a hub itself, then the only term that makes sense is c̃jj(X), since we assume single allocation
throughout the first hub.

The above information allows us to reformulate the problem as a special case of ordered assignment problem once a
complete set of open hubs (p locations) is known. For this reformulation we only need variables r , u and v as defined in (2),
(14) and (15), respectively. Thus, given the set of hubs X with |X | = p, the reformulation of Problem (16)–(23) is as follows:

min
I

i=1

G
h=2

γi(ĉ(h) − ĉ(h−1))vih +

N
j=1

N
k=1

rjkc̃jk(X)

s.t. Constraints: (4), (5) and (18)–(23).

This problem is similar to Problem (16)–(23) wherewe have removed the constraints implied by the knowledge of which
hubs are open and forbidden in the current solution.

Reformulating the original problem in the above form reduces the CPU time needed to solve the subproblems at complete
location nodes (those nodes where the number of sites already fixed to be open hubs is p) in the B&B algorithm.

4. A specialized branch and bound for the discrete hub ordered location problem

The driving variables for the Single-Allocation Ordered Hub location problem are the binary r-variables, indicating which
sites have been selected for hub location, rjj, and the allocation of each origin site j to the first hub k in its delivery paths to
all its final destinations, rjk. Once these variables are known, the objective value is easy to calculate since it reduces to an
‘‘ad hoc’’ enumeration. It thus makes sense to build a branch and bound (B&B) method based initially on the rkk variables,
i.e. on decisions of whether or not a site is selected to be an open hub. Then, we proceedwith the branching of the remaining
variables.

We develop a B&B in which each node contains information of a disjoint pair of sets of sites, two sets of disjoint pairs and
a range of integer values. For a given node, let H ⊆ A denote the set of open hubs and H ⊆ A \H denote the set of forbidden
hubs. We refer to the sites in the set A \ (H ∪ H) as undecided. By OH we refer to the set of allocation pairs between origin
sites and open hubs in H , whereas by OH we refer to the forbidden allocations, i.e. those that have been discarded and will
never be feasible in this particular solution. Moreover, V denotes the ranges of admissible integer values for the v-variables
in that node. Thus, a node in the B&B tree contains the 5-tuple (H,H,OH,OH, V ). Of course, a node is a complete location
node if either |H| ≥ p or |H| ≥ N − p. Clearly, if (j, k) ∈ OH , j ≠ k, it implies that k ∈ H and j ∉ H since open hubs are
always allocated to themselves.

Based on the above discussion, in the following we develop new lower bounds. Some of them are based on solving either
the linear or the Lagrangian relaxations or an ‘ad hoc’ lower bound based on another type of problem. Yet another one, of
combinatorial nature, that is simpler and it does not require the solution of any optimization problem.We discuss our lower
bounds in detail in Section 4.1. We have also obtained several combinatorial upper bounds based on completions of partial
solutions that are described in Section 4.2 andwe discuss our branching rule in detail in Section 4.3. In Section 5we compare
computationally the performance of our B&B method with that of the best integer linear programming formulation.

4.1. Combinatorial lower bounds

At each node which is not a complete location node, we need to calculate lower bounds on the value of the cost function,
aiming to discard the node by bounding. Assume that a set of sites H , |H| ≤ p has been opened as hubs, and another set H ,
|H| ≤ N − p of sites is forbidden to be used as hubs, i.e. rkk = 1 for any k ∈ H and rkk = 0 for any k ∈ H̄ . Let A \ H be the set
of sites which are either open hubs or undecided. Then, one can easily extend the definition in (39), to ζ ′

jkm(H,H) to be the
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minimum second block cost of delivering from the origin site j to the final destination m, either directly or using as a first
hub k ∈ A \ H when j is not a hub itself (and possibly a second hub also in A \ H whenm is not either a hub).

From the above equations, we obtain, c̃ ′

jk(H,H), the minimum second block cost of all the flow sent from the origin site
j via hub k ∈ A \ H in the conditions described above,

c̃ ′

jk(H,H) :=

N
m=1

ζ ′

jkm(H,H), ∀j, k = 1, . . . ,N. (41)

Note that when j ∈ H , then the only term that makes sense is c̃ ′

jj(H,H), since we assume self-service and single allocation
throughout the first hub. Next, define

ĉ ′

j (H,H) =


min

k∈A\H,k≠j
ĉjk, if j ∈ A \ H

0, otherwise.
(42)

c̃ ′

j (H,H) = min
k∈A\H

c̃ ′

jk(H,H). (43)

Clearly (42) is the minimum first block delivery cost for a customer at site j to a hub in k ∈ A \ H . Analogously, (43) stands
for theminimum second block, namely between hubs and second hub–final destination, i.e., delivery cost, once the first hub
has been achieved, of the commodity sent from origin j to all final destinations using as hubs only those in A \ H . Let σ be
the permutation of 1, . . . ,N such that

ĉ ′

σ(1)(H,H) ≤ · · · ≤ ĉ ′

σ(N)(H,H).

Next, observe that in any feasible solution there are p costs of the first block of costs of the objective function equal to zero.
These costs correspond to deliveries of origin sites that are hubs to first hubs (themselves). The remaining sites, that are not
hubs, send their flow necessarily via some first hub. This implies that the first block of costs of the objective function must
have N − p non-null addends.

Now, the second part of the cost of the objective function corresponds to the transportation costs between hubs and
second hub–final destination delivery costs. Obviously, if we assume that only sites that are in A \ H can be used as hubs,
then c̃ ′

j (H,H) gives the cheapest way to send the delivery from site j to all destinations.
Then, we define LB2(H,H) as

LB2(H,H) =

N−p
j=1

λp+j ĉ ′

σ(|H|+j)(H,H)+

N
j=1

c̃ ′

j (H,H). (44)

In the following proposition we present a lower bound on the objective function value of any feasible solution having
facilities in H as open hubs and H ⊆ A as forbidden to be open hubs.

Proposition 4.1. Given H,H ⊆ A, H∩H = ∅with |H| < p and |H| < N −p, let S, S ⊆ A\ (H∪H)with S∩S = ∅, |H∪S| ≤ p
and |H ∪ S| ≤ N − p. Then

LB2(H ∪ S,H ∪ S) ≥ LB2(H,H).

Proof. Let σ i with i = 1, 2 be the permutations such that

ĉ ′

σ 1(1)(H,H) ≤ · · · ≤ ĉ ′

σ 1(N)(H,H),

ĉ ′

σ 2(2)(H ∪ S,H ∪ S) ≤ · · · ≤ ĉ ′

σ 2(N)(H ∪ S,H ∪ S).

We know from (44) that:

LB2(H ∪ S,H ∪ S) =

N
j=p+1

λj ĉ ′

σ 2(j)(H ∪ S,H ∪ S)+

N
k=1

c̃ ′

j (H ∪ S,H ∪ S) and

LB2(H,H) =

N
j=p+1

λjĉ ′

σ 1(j)(H,H)+

N
k=1

c̃ ′

j (H,H).

First of all, by their definitions (see (42) and (43)), ĉ ′

j (H ∪ S,H ∪ S) ≥ ĉ ′

j (H,H) and c̃ ′

j (H ∪ S,H ∪ S) ≥ c̃ ′

j (H,H) for all
j = 1, . . . ,N . Therefore, using [31, Theorem 1.1] we obtain that ĉ ′

σ 2(i)
(H ∪ S,H ∪ S) ≥ ĉ ′

σ 1(i)
(H,H) for all j = 1, . . . ,N .

Hence, since we assume λ ≥ 0 the inequality LB2(H ∪ S,H ∪ S) ≥ LB2(H,H) holds. �
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As a consequence of Proposition 4.1 LB2(H,H) is a lower bound on the objective function value of any feasible solution
having facilities in H as open hubs and in H as closed.

Example 4.1 (Example 2.1 Continued). Suppose that we are at a node of the branch and bound tree, such that, H = ∅ and
H = {4}, i.e. site 4 is forbidden to be an open hub by branching. To calculate LB2(H,H), we compute the vectors ĉ ′(H,H),
c̃ ′(H,H) and ĉ ′

σ(j)(H,H).

j 1 2 3 4 5 6 7 8 9 10

c̃ ′(H,H) 247.4 277.2 161.2 169.3 308.8 338.5 344.4 382.2 253.7 374.8
ĉ ′(H,H) 91 106 70 67 100 218 101 520 285 984
ĉ ′

σ(j)(H,H) 67 70 91 100 101 106 218 285 520 984

Therefore, the computation of the three addends of the lower bound LB2(H,H) given by (44) reduces to:
N

j=p+1

λj ĉ ′

σ(j)(H,H) = 1 × 91 + 1 × 100 + 0 × 101 + 0 × 106 + 1 × 218

+ 1 × 285 + 1 × 520 + 0 × 984 = 1214,
N

k=1

c̃ ′

j (H,H) = 247.4 + 277.2 + 161.2 + 169.3 + 308.8 + 338.5 + 344.4 + 382.2 + 253.7 + 374.8 = 2857.5.

From the above, the lower bound (44) applied to this example results in LB2(H,H) = 4071.5.

The third lower bound is based on a Lagrangian relaxation of the original problem. Assume thatwe are in a node of the B&B
tree defined by (H,H,OH,OH, V ).We relax constraints (18) in the formulation (16)–(23), withmultipliers ξ = (ξ1, . . . , ξG),
ξi ≥ 0 for all i = 1, . . . ,G, which results in:

L(ξ) = min
I

i=1


G

h=2


γi(ĉ(h) − ĉ(h−1))vih − ξh(αiuih + vih)



−

I
i=1

ξ1(αiui1 + vi1)

N
k=1

N
ℓ=1

N
m=1

xkℓm(µckℓ + δcℓm)+

G
h=1

N
j=1

N
k=1

ĉjk≥ĉ(h)

ξhrjk − αI+1

G
h=1

ξh

s.t. (4)–(10) and (19)–(23).

We observe that the above problem can be split into two subproblems.

1. The problem on the u, v variables is

Pu,v(ξ) := min
I

i=1


G

h=2


γi(ĉ(h) − ĉ(h−1))vih − ξh(αiuih + vih)


−

I
i=1

ξ1(α1ui1 + vi1) (45)

s.t. (19)–(22).

This first subproblem can be easily solved by inspection. Assume that ξ is given, we proceed as follows. First, using the
expression of (45) we can fix ui1 and vi1 for all i = 1, . . . , I: ui1 := 1 and vi1 := β1. Then for a given h ∈ {2, . . . ,G} we
compute

ηhri =


γi(ĉ(h) − ĉ(h−1))r +

I
j=i+1

γi(ĉ(h) − ĉ(h−1))βj −


r +

I
j=i+1

(αj + βj)


ξh, if r < βi

I
j=i

γi(ĉ(h) − ĉ(h−1))βj −


I

j=i

(αj + βj)


ξh, if r = βi

for all i = 1, . . . , I , r = 1, . . . , βi. Clearly, these values correspond to the part of the objective function that is due to the
allocation in the h-th column of (0, i. . . , 0, 1, . . . , 1) for the u variables and (0, i−1. . . , 0, r, βi+1, . . . , βI) for the v variables,
if r < βi; and (0, i−1. . . , 0, 1, . . . , 1) for the u and (0, i−1. . . , 0, βi, βi+1, . . . , βI) for the v variables, if r = βi. Hence, we look
for the minimum among those allocations. Let ηhr∗ i∗ = min i=1,...,I

r=1,...,βi

 ηhri. Then, an optimal assignment for the variables in

the h-column is

uih :=

1, if i > i∗

1, if i = i∗ and r = βi
0, otherwise.

vih :=

0, if i < i∗

r∗, if i = i∗

βi, if i > i∗.
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2. The problem on the x and r variables is

Pxr(ξ) := min
N

k=1

N
ℓ=1

N
m=1

xkℓm(µckℓ + δcℓm)+

G
h=1

N
j=1

N
k=1

ĉjk≥ĉ(h)

ξhrjk

s.t. (4)–(10) and (23).

This problem does not have the integrality property, i.e. its linear relaxationmay not be integer. Nevertheless, it is relatively
easy to solve to optimality because the number of integer variables and constraints is not too large.

Clearly, L(ξ) = Puv(ξ)+Pxr(ξ)−αI+1
G

h=1 ξ
∗

h . In our lower boundwe replace the original Pxr(ξ) by its linear relaxation,
LPxr(ξ). We solve the Lagrangian dual of the modified Lagrangian relaxation where the second problem is substituted by
its linear relaxation, namely DualVal := maxξ L′(ξ) := Puv(ξ) + LPx,r(ξ) − αI+1

G
h=1 ξ

∗

h . In solving this problem we use
standard subgradient algorithm and our initial Lagrangian multipliers are ξh =

1
N−1

I
i=2 γi(ĉ(h) − ĉ(h−1))βi ∀h ≥ 2 and

ξ1 = 1. The value DualVal coincides with the optimal value of the linear relaxation of the formulation given by (16)–(23).
Nevertheless, once the optimal dual multiplier, ξ ∗, is obtained we improve this lower bound by solving, in integer variables,
Px,r(ξ ∗) (Note that since Pxr(ξ ∗) does not exhibit the integrality property, one may expect to raise the lower bound). Once
this value is available the third lower bound

LB3 := Puv(ξ ∗)+ Pxr(ξ ∗)− αI+1

G
h=1

ξ ∗

h . (46)

Note that this strategy works because solving to optimality, in integer variables, the subproblem Px,r(ξ ∗) is not very time
consuming since these problems are easy to solve.

Example 4.2. Here, we compare the power of the lower bounds derived from (Proposition 3.1), (44) and (46) and the
linear relaxation of Problem (16)–(23). We consider the data given in Example 2.1 with H = ∅,H = {4} and its
original λ-weight. In addition, we also show the result with a different vector of non-decreasing monotone lambda weights
λ = (0, 0, 0, 0, 1, 1, 1, 1, 1, 1). The results are:

λ-weight (0, 0, 0, 0, 1, 1, 1, 1, 1, 1) (0, 0, 1, 1, 0, 0, 1, 1, 1, 0)

LB1 (Proposition 3.1) 8012.5 6084.15
LB2 (44) 6769.9 4071.5
LB3 (46) 6897.9 6679.9
Linear relaxation 5503.6 4616.15
Objective 9761.9 8162.9

From the above table we conclude that none of the lower bounds uniformly dominates the others. Indeed, for λ =

(0, 0, 0, 0, 1, 1, 1, 1, 1, 1) bound LB1 is the best whereas for λ = (0, 0, 1, 1, 0, 0, 1, 1, 1, 0) the best one is LB3. In addition,
although most of the times LB2 is dominated by some other (not always) its quality is rather good and its computing time is
very short, making it competitive. Actually, we have observed that the second and fourth (LP relaxation) lower bounds can
easily be computed whereas the first and third lower bounds require more effort and CPU time. The goal of this approach
is to avoid solving the subproblem improving the lower bound, at the cost of increasing the CPU time needed to get them.
Hence, LB, the best bound among them, could be:

LB := max{LB1, LB2, LB3}. (47)

We observe that none of the lower bounds are trivial at the root node.
In the implementation, our strategy has been to compute LB2 at any node of the B&B tree since it is not time consuming

and its performance is better provided that the number of fixed variables in the B&B tree increases. On the other hand,
bounds LB1 and LB3 have been computed in all nodes, only up to a fixed depth due to the effort to compute them (in our
experimentswe choose a depth equal to 5). They are also computed in those nodes such that the number of location variables
that are fixed is above a threshold value that depends on the problem type and size.

4.2. Combinatorial upper bounds

This section describes combinatorial upper bounds for our problem. These bounds are computed at the root node but
also at any node of the branching tree trying to improve the incumbent solution or even pruning the node. Therefore, we
assume that a partial solution (H,H,OH,OH, V ) is given, then the idea is to construct feasible solutions that are consistent
with the structure of (H,H,OH,OH, V ).

First of all, we have considered two different approaches to the completion process of the set H up to a set X with
cardinality p (|X | = p). Once, this completion has been done, we will find feasible delivery paths between each pair of
origin–destination sites that only use hubs in X .
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1. The first completion approach is based on ranking any candidate site k0 by its overall transportation cost, assuming that
the flow of all the sites of A \ H go through k0 as first hub. Thus, we compute for each site k0 ∈ A \ (H ∪ H) the index
Σk0(H) defined below. Recall that ĉjk0 = cjk0Wj, for all j ∉ A \ H , (j, k0) ∉ OH and j ≠ k0. Let π k0 be a permutation that
sort the vector (ĉjk0)j∈A\H , such that

ĉπk0 (1) ≤ · · · ≤ ĉπk0 (N−|H|).

Then, we define

Σk0(H) :=

N−|H|
j=1

λj+|H|ĉπk0 (j) +

j∈X\H

N
m=1

ζ ′

jk0m(H,H), ∀k0 ∈ A \ (H ∪ H). (48)

Let ψ = N − |H ∪ H| and let η be a permutation that sorts the expressions above for k0 ∈ A \ (H ∪ H) such that

Ση(1) ≤ Ση(2) ≤ · · · ≤ Ση(ψ).

Then, X = H ∪ {η(1), . . . , η(p − |H|)}.
2. The second completion approach is based on setting to 1 those location variables (rkk) that support the largest proportion

of allocations from the origin sites. First of all, we fix to one those variables that correspond to hubs inH and to zero those
in H , i.e. we set rkk = 1,∀k ∈ H and rkk = 0,∀k ∈ H . Next, we solve the relaxed LP-problem with the above variables
already fixed and from the continuous solution we compute for each hub k the amount of allocations delivered via first
hub k, i.e. Fk =

N
j=1 rjk. Then, we fix to one p − |H|, rkk variables corresponding to those kwith the largest values of Fk.

Once we have completed a set X of open hubs with |X | = p, we describe two ways to compute two different upper
bounds based on the pattern given to the allocations of origin sites to first hubs. Therefore, we will have four different upper
bounds since we have two different ways to complete the set X .

1. The first bound is the simplest one because it requires less computation burden. For any origin j ∈ {1, . . . ,N} we choose
as its first hub K(j) ∈ X if either (j,K(j)) ∈ OH or ĉjK(j) = mink∈X,(j,k)∉OH ĉjk.

Now, for each origin site j = 1, . . . ,N , we compute the value of the second block of delivery cost provided that the
first hub used by j is K(j). That is,

c̃jK(j)(X) :=

N
m=1

ζjK(j)m(X). (49)

Clearly, we have constructed a solution that for each origin site j delivers its flow, first via K(j) and then optimally to
all their final destinations using only hubs in X . To compute the upper bound, we sort the elements (ĉjK(j))j=1,...,N in
nondecreasing sequence with the permutation σK . Moreover, its objective value is:

UB1(H,H,OH,OH) :=

N
j=1


ĉσK (j)λj + c̃jK(j)(X)


. (50)

2. The second upper bound is similar but using K ′(·) a different allocation rule for the assignment of origin sites to their
first hub. This allocation rule is based on a ranking of the hubs by an estimate of the overall cost they would produce.
The rationale is as follows. For each origin site j we compute the estimate of its contribution to the objective function
provided that it would go via first hub k:

Λ(ĉjk)ĉjk +

N
m=1

ζjkm(X).

Note that since we do not know ‘‘a priori’’ the position of ĉjk in the sorted sequence of costs we do not know the actual
λ-parameter that would multiply it. To avoid this problem we use the estimate Λ(ĉjk) which is based on assuming
a uniform distribution of costs in its entire range [0, ĉ(G)]. We define Λ : R → {λ1, . . . , λN} so that Λ(a) = λi if
a ∈


ĉ(⌊(i−1)∗G/N⌋), ĉ(⌊i∗G/N⌋)


, for i = 1, . . . ,N .

Next, we compute

čj(X) := min
k∈X,(j,k)∉OH∪OH


Λ(ĉjk)ĉjk +

N
m=1

ζjkm(X)


.

Then, set K ′(j), for all j = 1, . . . ,N , to be either K ′(j) = k if (j, k) ∈ OH or the hub that provides the above minimum,
i.e.

čj(X) = Λ(ĉjK ′(j))ĉjK ′(j) +

N
m=1

ζjK ′(j)m(X), if (j, k) ∉ OH.
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Table 2
The indicesΣk(H) and


j rjk applied to Example 2.1.

k 1 2 3 5 6 7 8 9 10

Σk(H) 7223 7600.2 8472.1 8492.7 7542.6 9359.2 6655 6805.4 8626.3
j rjk 0.9236 1.0593 0.9522 1.0774 1.8422 1.2338 1.6719 1.1712 0.0685

Table 3
Computation of the first upper bound with the set X = {8, 9}.

j 1 2 3 4 5 6 7 8 9 10

ĉj,8 455 106 560 1072 1300 218 606 0 475 2337
ĉj,9 1638 212 840 268 2000 218 101 1248 0 984
ĉσK (j) 0 0 101 106 218 268 455 560 984 1300
c̃jK(j)({8, 9}) 687.6 870.3 639 504.8 854.7 981.9 654.9 1054.8 756.2 933.7

Table 4
Computation of the first upper bound with the set X = {6, 8}.

j 1 2 3 4 5 6 7 8 9 10

ĉj,6 819 1696 1330 67 200 0 1111 1248 1140 1968
ĉj,8 455 106 560 1072 1300 218 606 0 475 2337
ĉσK (j)({6, 8}) 0 0 67 106 200 455 475 560 606 1968
c̃jK(j) 627.3 788.1 519.3 321.6 658.9 558.3 874.5 1008.6 631.5 720.3

To compute the upper bound, we sort the elements (ĉjK ′(j))j=1,...,N in nondecreasing sequence with the permutation
σK ′

. Finally, the actual objective value of the feasible solution built with the allocation given by K ′(j) for all j is

UB2(H,H,OH,OH) :=

N
j=1


ĉ
σK′

(j)λj + c̃jK ′(j)(X)

. (51)

Example 4.3. Once more, we illustrate the upper bounds with the data of Example 2.1. There are two methods to complete
the set of open sites up to the total number of p. The first way is based on choosing the p − |H| smallest values of the index
Σk(H).

Indeed, consider that H = {4} and H = OH = OH = ∅, i.e. site 4 is forbidden to be a hub and no site is already open for
a hub in this solution. Note that ψ = 10 − 1. We compute the indexΣk(H), for all k and the two smallest ones correspond
to sites 8 and 9. These results are shown in Table 2. Hence, the set of open hubs is given by X = {η(1), η(2)} = {8, 9}.

The second method to complete a partially defined set of open hubs is based on some manipulations of the values of
the linear relaxation of the problem. Indeed, for each k ∈ A \ (H ∪ H), we compute the values


j rjk. Based on Table 2,

we complete the partial solution with the two sites providing the largest values of


j rjk. In our example, since H = ∅ we
complete with the sites 6, 8 that correspond to the two largest values 1.8422, 1.6719. Thus X = {6, 8}.

As for the upper bounds we have defined two different approaches which in turns when combined with the two
completion methods results in 4 different upper bounds.

The first upper bound consists of applying the rationale of (50) on the first completion approach that in this example
results in the set X = {8, 9}. For each origin site j, find the open hub K(j) and the sorted sequence ĉσK (j) of such values.

Then,
N

j=1 ĉσK (j)λj = 2206 and (49) is given by
N

j=1 c̃jK(j)(X) = 7937.9, see Table 3. Thus, the first upper bound with
the first completion scheme is:

UB1
1({8, 9}, {4},∅,∅) :=

N
j=1


ĉσK (j)λj + c̃jK(j)(X)


= 10143.9.

Now, we apply this upper bound to the second completion scheme based on the values of the linear relaxation. Recall
that for this completion X = {6, 8}. Then, we apply the same rationale as above resulting the values in Table 4. Based on
these data the resulting upper bound is

UB2
1({6, 8}, {4},∅,∅) :=

N
j=1


ĉσK (j)λj + c̃jK(j)(X)


= 8522.4.

Now, we illustrate the computation of the second upper bound for the first completion X = {8, 9}. Recall that we need
to compute Λ(ĉjK ′(j)) for all j = 1, . . . ,N . Table 5 gives us Λ(ĉjk) for all pairs j, k. Next, we determine the assignment of
each origin site j to the chosen first hub, according to the values of čj(X). Table 6 shows in bold letters the value of čj(X),
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Table 5
Λ(ĉjk), for all j, k = 1, . . . ,N .

j k
1 2 3 4 5 6 7 8 9 10

1 0 1 1 1 1 0 0 1 1 0
2 1 0 1 0 0 1 0 0 0 0
3 1 0 0 1 0 1 1 1 0 1
4 1 0 1 0 0 0 0 0 0 1
5 0 0 0 1 0 0 1 1 0 0
6 0 0 1 0 1 0 0 0 0 1
7 0 1 0 1 1 0 0 1 0 0
8 1 1 1 1 1 1 1 0 1 1
9 1 1 1 0 0 1 1 1 0 0

10 0 0 0 1 1 0 0 0 0 0

Table 6
Assignments K ′(j) given by čj({8, 9}).

j 1 2 3 4 5 6 7 8 9 10

čj({8}) 1142.6 870.3 1199 547.8 2154.7 981.9 1502.1 1054.8 1201.3 989.4
čj({9}) 2226.7 820.9 628.2 504.8 620.1 753.4 654.9 1323.6 756.2 933.7
K ′(j) 8 9 9 9 9 9 9 8 9 9
ĉjK ′(j) 455 212 840 268 2000 218 101 0 0 984
c̃jK ′(j)({8, 9}) 687.6 820.9 628.2 504.8 620.1 753.4 654.9 1054.8 756.2 933.7

Table 7
Assignments K ′(j) given by čj({6, 8}).

j 1 2 3 4 5 6 7 8 9 10

čj({6}) 437.9 2116.3 1532.5 321.6 658.9 558.3 620.8 2018.4 1554.2 720.3
čj({8}) 1082.3 788.1 1079.3 473.1 2105.8 1017.9 1480.5 1008.6 1106.5 954.3
K ′(j) 6 8 8 6 6 6 6 8 8 6
ĉjK ′(j) 819 106 560 67 200 0 1111 0 475 1968
c̃jK ′(j)({6, 8}) 437.9 788.1 519.3 321.6 658.9 558.3 620.8 1008.6 631.5 720.3

the sequence ĉjK ′(j) and c̃jK ′(j)({8, 9}) for all j = 1, . . . ,N . Hence,
N

j=1 ĉσK′
(j)λj = 2592,

N
j=1 c̃jK ′(j)(X) = 7414.6 and the

upper bound results in:

UB1
2({8, 9}, {4},∅,∅) = 10006.6.

Analogously, we also compute the second upper bound for the second completion given by the set X = {6, 8}.
Table 7 shows in bold letters the value of čj(X), the sequence ĉjK ′(j) and c̃jK ′(j)({6, 8}) for all j = 1, . . . ,N . Therefore,N

j=1 ĉσK′
(j)(X)λj = 2663,

N
j=1 c̃jK ′(j)(X) = 6265.3 and the upper bound is:

UB2
2({6, 8}, {4},∅,∅) = 8928.3.

Finally, we compare the values of the four upper bounds and observe that min{UB1
1,UB

2
1,UB

1
2,UB

2
2} = min{10143.9,

8522.14, 10006.6, 8928.34} = 8522.14 that corresponds to the first upper bound with the second completion strategy.
The reader may note that the best integer solution assuming that hub 4 is closed is 8162.9.

4.3. Branching

We begin by describing the generic form of the branching rule, which is strong. For its description we assume that
(1) an ordering of the undecided sites is given, i.e. a rule to branch on the location variables, (2) an ordering on the allocation
of origin sites to hubs in the current solution is given (note that those origin sites that are at the same time hubs in this
solution are always assigned to themselves therefore these allocations are not needed), i.e. a rule to choose the variable to
branch on the allocation variables, and (3) a rule to select a fractional u or v variable is available. These three elements allow
us to make the decision on which variable to branch in a given node of the B&B tree and determine the specific form of our
branching strategy. We have tried several ordering although we will only describe the one that finally is implemented in
our algorithm.

We assume that we first have fixed as many variables as possible, according to our variable fixing strategies described
in Section 3.1. Then, our branching strategy works as follows. Initially it always proceeds first with the augmentation of the
set H until a given size MAXLEVEL < N − p, i.e. branching on the location variables rkk up to the level MAXLEVEL in the B&B
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tree. For these variables we use as branching criteria the strong branching based on testing the best progress among all the
location variables. This is done by fixing, one at a time, all the fractional rkk to 0 and performing some iterations of the dual
simplexmethod (75 iterations in our implementation) in order to choose that one that provides the best lower bound value.
Note that this strategy is not much time consuming since the number of location variables in our test problems are not very
large (N ≤ 30).

Then,weproceed to apply the branching on the remaining fractional variables, namely rjk and uih, vih, with j, k = 1, . . . ,N
and i = 1, . . . , I , h = 2, . . . ,G. For these variables we apply pseudocost branching (see [1]) to detect the most promising
variable among the fractional ones. If the choice is either a location variable (rkk for some k) or an allocation variable (rjk,
j ≠ k) then we directly branch on that variable. However, if the choice is an u, v-variable we redefine the branching variable
using an ad-hoc strategy based on some bounds on their fractional values that gives us good performance in terms of CPU
time for these problems. (The interested reader may find further details in [33].)

Example 4.4. We illustrate the B&B schemewith the data of Example 1. Fig. 3 shows some nodes of the branching tree. Each
node shows the set H and H of open and closed hubs, respectively. In addition, we show the best upper bound found so far
UB and the lower bound LB in each node. In this example we set MAXLEVEL = 2. The algorithm proceeds from the root node
H = ∅,H = ∅ with UB = 9725.2 and LB = 4082.1. Next, it chooses r22 = 0 to branch, i.e. the new set H = {2}, and then it
moves to the left most node of the second level (see Fig. 3). Then, the algorithm branches down on r66 = 0 and after some
steps, represented in the figure by the dashed arrows, it finds the only two non-pruned integer solutions of this branch that
correspond to the two left-most nodes of the fourth level (H = {5, 8} and H = {1, 7}). Analogously, the branch on r66 = 1
finds as unique integer solutions the configurations with H = {4, 6} and H = {1, 6}. These two nodes are shown by the two
right-most nodes of the fourth level of the tree.

We observe that in this example the remaining two nodes of the second level, namely H = {2},H = {7} and
H = {2, 7},H = ∅ are pruned by bounding. The overall number of nodes of the tree being 94.

5. Computational results

We implemented theB&Bmethodusing theMosel programming language,with the upper bound initialized by aheuristic
method based on our combinatorial methods described on Section 4.2. Our tree search strategywas best bound. Themethod
was run on a Intel(R) Core(TM)2 Quad CPU Q6600 4 GB RAM.

This section reports on the computational comparison between the Pre-Covering 3-Index formulation (that uses
the formulation (3)–(13) with a preprocessing of fixing variables, see [32] for further details), Improved formulation
(based on (16)–(23) with the variable fixing in Section 3.1), and the B&B&Cut algorithm developed in this paper. For
this purpose we use the AP data set publicly available at http://www.cmis.csiro.au/or/hubLocation (see [12]). We tested
the formulations on a testbed of five instances for each combination of (i) costs matrices, (ii) N in {15, 20, 25, 28, 30}
(iii) different values of p depending on the case and (iv) µ = 0.7, δ = 1.2µ and six different λ-vectors. Among them
we consider center (λ = (0, . . . , 0, 1)), k-centrum (k = ⌈0.2N⌉, λ = (0, . . . , 0, 1, k. . . , 1)), (k1 + k2)-trimmed-mean
(k1 = k2 = ⌈0.2N⌉, λ = (0, k1. . . , 0, 1, . . . , 1, 0, k2. . . , 0)), anti-(k1 + k2)-trimmed-mean (k1 = k2 = ⌈0.2N⌉, λ = (1, k1. . . , 1,
0, . . . , 0, 1, k2. . . , 1)), median (λ = (1, . . . , 1)) and 3-blocks (three alternate {0 − 1}-blocks of lambda weights, i.e. λ =

(0, . . . , 0, 1, . . . , 1, 0, . . . , 0, 1, . . . , 1, 0, . . . , 0, 1, . . . , 1)).
Tables 8 and 9 report the comparative results of the Pre-Covering 3-Index formulation ((3)–(13), see [32]), Improved

formulation (16)–(23) and our B&B&Cut. Table 8 includes problem typesMedian, Center, k-Centrum and Table 9 the remaining
problems type, namely Trimmed Mean, Anti-Trimmed Mean, 3-Blocks. These tables have three groups of columns. The first
group, with columns R-Gap, Nodes, and Time, refers to the formulation Pre-Covering 3-Index (3)–(13), the second groupwith
columns RGAP, %Fixed,UBv ,Nodes and Time refers to the Improved formulation (16)–(23), whereas the third group, including
columns Nodes, TCuts, Cuts, and Time, presents the information regarding our B&B&Cut procedure based on formulation
(16)–(23). The first three columns of these two tables stand for the different types of problems in the study. In all groups,
columns R-GAP,Nodes and Time, stand, respectively, for the averages of: the gap in the root node, the number of nodes in the
B&B tree, and the CPU time in seconds. The columns of the second group %Fixed and UBv stand for the percentage of integer
variables and the number of upper bounds for v-variable that are fixed by our preprocessing (see Section 3.1). The columns
in the third group TCuts and Cuts, stand for the overall number of cuts of type (27)–(34) and the number of cuts of types
(29)–(32) added to the formulation. The reader may observe that columns RGAP, %Fixed and UBv for Improved formulation
(second group) are also valid for the B&B&Cut procedure (third group). The reason for that is that they report the average
gapwith respect to the linear relaxation of the same formulation, namely Improved (16)–(23), using the same variable fixing
schemes.

The symbol ‘‘∗’’ in some columns means that Xpress ran ‘‘out of memory’’ solving some of the five instances for the
corresponding combination of parameters. The notation ‘‘∗i’’ represents that only i out of the five instances were solved.

In both tables, we observe that, with few exceptions, our procedure solves the instances with sizes lower than or equal
to 25 or larger, but with a small number of hubs (p = 3), much faster than using Pre-Covering 3-Index and faster than using
Improved formulation. One can also observe that Improved is much faster than Pre-Covering 3-Index, despite that R-Gap is
slightly larger than the one obtained by the latter formulation.

http://www.cmis.csiro.au/or/hubLocation
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Table 8
Results for problem types median, center, and k-centrum.

N P PRE-Cov-3-Index Improved formulation B&B& Cut
R-GAP Nodes Time R-GAP % Fixed UBv Nodes Time Nodes TCuts Cuts Time

MEDIAN

15 3 12.12 259 22.03 15.56 26.96 220.60 393 7.76 433 225 0 6.67
15 5 5.61 266 19.61 8.21 18.05 156.00 250 5.37 829 180 0 6.61
15 8 4.07 116 7.93 5.14 8.92 61.20 78 2.40 691 207 0 3.57
20 3 16.77 1667 318.92 24.62 30.78 445.40 1447 51.53 1334 920 0 50.67
20 8 4.89 1492 234.83 6.64 15.45 218.20 1258 38.98 1956 354 0 27.70
20 10 3.53 201 47.48 4.17 6.62 103.20 213 10.49 553 262 0 11.89
25 3 15.13 2358 1484.42 21.34 33.74 799.40 1701 139.36 490 2776 0 114.85
25 8 4.02 8701 5059.93 7.59 15.47 361.80 11443 585.14 12340 626 1 277.15
25 10 3.55 4239 2100.98 4.42 13.99 285.80 4631 221.69 5852 290 0 173.08
28 3 16.01 4544 6496.44 23.89 27.89 853.60 4043 414.73 2114 784 0 274.27
28 8 *2 * * 11.40 18.22 507.40 42867 2884.19 56531 787 3 1750.55
28 10 *3 * * 6.66 14.55 423.20 11039 812.73 22025 786 2 795.73
30 3 16.87 7513 15556.82 23.58 32.04 1098.40 6854 825.82 2898 1497 0 640.98
30 8 *2 * * 9.75 18.96 591.00 *2 * 23213 1162 2 1801.57
30 10 * * * 6.42 16.66 508.60 *3 * 82937 1342 24 5123.17

CENTER

15 3 16.25 425 26.59 20.76 60.73 0.00 283 6.63 341 1342 1127 6.24
15 5 12.00 707 27.30 13.43 32.20 0.00 493 9.00 507 1028 891 10.00
15 8 8.61 612 17.35 9.58 11.81 0.00 453 7.44 509 1195 1015 8.29
20 3 17.70 2520 328.03 21.53 64.61 0.00 1432 54.04 539 2574 2111 44.35
20 8 16.65 10136 420.72 17.20 24.48 0.00 2555 72.98 1256 2259 1983 58.14
20 10 11.87 18014 593.77 11.93 12.50 0.00 9817 210.09 4777 3589 3349 157.70
25 3 17.40 5627 1937.44 21.16 69.18 0.00 5314 359.93 1605 6907 6482 257.66
25 8 16.06 16353 1693.88 17.30 36.41 0.00 9333 534.09 4290 4379 4207 301.40
25 10 13.62 15890 2117.80 13.56 26.13 0.00 18458 1051.05 11310 1909 1881 783.82
28 3 18.66 8842 4914.40 22.60 76.22 0.00 7074 650.22 2623 9896 8783 533.76
28 8 *1 * * 26.24 31.87 0.00 *2 * 73797 50358 48472 20225.24
28 10 *2 * * 18.60 26.36 0.00 *4 * 41533 32273 31014 10536.06
30 3 19.99 13523 11003.93 22.86 68.72 0.00 11711 1886.08 3398 10425 9813 1048.07
30 8 * * * 25.03 38.74 0.00 * * 97474 44793 42627 23519.10
30 10 * * * 21.56 30.49 0.00 *1 * 110811 55008 32663 25377.11

K-CENTRUM

15 3 12.18 287 20.88 20.66 22.04 139.40 574 12.63 193 810 585 8.85
15 5 8.25 786 26.88 14.15 15.62 97.00 1608 19.08 1101 664 457 14.89
15 8 5.20 309 8.10 6.83 6.55 37.00 534 7.24 569 525 300 7.67
20 3 14.68 3094 368.09 25.94 21.23 242.20 3932 142.77 550 2166 1766 75.38
20 8 5.77 6472 332.36 8.67 10.29 108.60 5166 136.94 2859 1148 795 92.03
20 10 4.45 2682 123.14 6.31 5.42 70.00 4153 98.51 2416 1149 749 65.61
25 3 13.89 7063 2318.49 25.90 22.78 412.60 7259 570.43 991 3136 1406 242.95
25 8 6.06 29662 4411.60 8.42 14.56 263.20 *4 * 31874 8050 6675 1980.21
25 10 4.86 13956 2016.96 6.78 10.22 212.80 17982 851.57 9537 2028 1436 539.29
28 3 11.58 8168 3391.19 21.20 27.90 554.40 13956 1274.51 5575 4010 2359 812.94
28 8 *1 * * 11.94 10.72 369.60 * * 80407 16860 13870 7229.00
28 10 * * * 11.92 8.96 224.20 *1 * 123084 54216 46667 10516.22
30 3 *3 * * 31.79 20.51 686.80 41015 4619.80 2340 9046 8146 1939.37
30 8 * * * 14.20 12.42 465.20 * * 122895 42630 33252 15795.39
30 10 * * * 8.89 12.89 344.20 *2 * 105415 109408 100742 14227.02

Tables 8 and 9 show, as a general trend, that the CPU time increases similarly, for all choices of the λ-vector, with the size
of the instances. In addition, Pre-covering 3-Index and the Improved formulations prove to be unable to reach optimality
for most of the instances of sizes larger than N = 25 and p = 8, 10 because the solver runs out of memory.

Analogously, we also observe that, in general, the number of nodes in the B&B tree, the number of cuts and the CPU time
increase as a function of N and for fixed N also increase with p. It is also interesting to point out that the R-Gap decreases
with p. Comparing columns TCuts and Cuts one observes that the highest number of cuts corresponds to those of type
(29)–(32) (Cuts). As for the implementation these cuts have been added to all nodes of the branch and bound tree up to
a level depth of 10 and depending on the problem they have been added each fix number of branching nodes (between 30
and 100 for large problems). These cuts help usually reducing the number of nodes of the Branch and Bound tree. Roughly
speaking, the preprocessing produces a slight reduction of the CPU time and it has a similar behavior for all the considered
problem types, although for the center problem the average percentage of fixed variables is slightly higher. Regarding the
number of added upper bounds for the v-variables, we observe that the highest number is stated for median problems and
the lowest number for the center. Observe that both models correspond to the ones with the biggest and the smallest block
of ones in their lambda parameters, respectively.
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Fig. 3. A partial view of the B&B tree of Example 4.4.

We have also observed that median problems (λ = (1, . . . , 1)) are particularly easy since, in general, these problems are
solved in the root node by the lower bound LB1 (remark that this bound reaches the optimal objective value). Finally, we
also point out that our resolution method is specially suitable for TrimmedMean problems in terms of CPU time. This effect
is due to the size reduction induced by our formulation which takes advantage of the last block of zero lambda weights that
does not affect the objective value.

6. Conclusions

This paper deals with the Single Allocation Ordered Median Hub Location problem introduced in [32]. Here, we have
developed an exact Branch and Bound and Cut solution approach based on an improved reformulation of the original one
given in [32]. This methodology provides better results than the previous one, both in CPU times and problem sizes that can
be solved to optimality.

The results in this paper provide an step further on the knowledge of this class of problems although we are aware that,
so far, we can handle medium size problems. Beyond these limitations, we are currently working on taking advantage of
our findings to be the basis of some heuristic approaches that allow us to enlarge the problem sizes to be tackled.
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Table 9
Results for problem types trimmean, antitrimmean, and blocks.

N P PRE-Cov-3-Index Improved formulation B&B& Cut
R-
GAP

Nodes Time R-
GAP

%
Fixed

UBv Nodes Time Nodes TCuts Cuts Time

TRIMMEAN

15 3 15.80 401 12.20 17.90 22.69 75.6 415 6.45 314 341 116 5.62
15 5 14.68 795 12.16 15.64 20.86 86.4 674 10.64 945 336 111 6.85
15 8 10.74 288 5.28 11.09 10.31 26 271 4.51 986 389 164 8.82
20 3 16.00 3882 194.93 18.55 23.61 138.8 1911 55.97 1177 1041 641 32.90
20 8 12.28 4766 136.73 13.41 13.15 77.4 6061 145.50 2502 1003 603 53.59
20 10 8.88 2944 53.12 9.49 13.54 58.2 1597 47.82 1520 651 389 40.89
25 3 17.37 9311 1148.53 19.99 28.93 190.4 9726 451.23 1967 3547 2922 118.44
25 8 12.32 37181 2559.94 13.58 18.00 147.6 32288 1430.17 4511 1919 1294 314.07
25 10 17.39 23402 1198.89 17.75 16.30 116 10837 545.43 56427 5710 5079 220.99
28 3 18.36 13508 3079.50 21.49 21.89 264.2 12768 966.67 4295 3819 3029 561.06
28 8 *2 * * 17.04 21.68 237.2 27581 2586.42 51996 562 130 1532.8
28 10 *3 * * 15.88 13.69 143.2 *4 * 22169 4750 3967 2063.51
30 3 17.48 14414 4346.09 19.46 31.85 317.6 19143 1627.12 6871 4445 3552 1128.50
30 8 *2 * * 17.27 14.87 259.2 * * 24962 5719 4819 2889.74
30 10 *3 * * 16.89 20.31 224.2 *3 * 11806 3228 2328 1389.32

ANTITRIMMEAN

15 3 12.77 339 19.17 20.88 36.68 142.2 813 14.62 776 757 525 9.63
15 5 7.09 526 17.64 10.96 28.57 67.8 986 14.92 376 874 646 7.74
15 8 4.60 261 5.63 5.83 14.87 25.6 497 8.00 559 690 460 6.61
20 3 15.22 3129 238.71 24.08 32.35 272.6 3361 132.44 632 1901 1485 55.16
20 8 6.33 5266 255.58 9.16 17.42 111.4 6709 183.33 4155 1321 1024 106.61
20 10 4.16 4110 138.52 4.62 14.35 68.8 4227 109.67 5080 1883 1464 89.81
25 3 14.94 7264 1760.41 25.11 38.05 453.8 8117 713.99 2427 3945 3033 307.64
25 8 6.77 14715 1692.35 8.96 21.33 284.6 16602 997.59 27330 5936 5305 780.65
25 10 6.16 52571 3653.86 6.78 15.83 194.6 43008 2384.22 43259 6902 6463 1473.78
28 3 15.42 16266 6964.46 25.98 37.30 708.4 13989 1711.95 3384 4231 3014 887.16
28 8 *2 * * 12.72 28.62 272.4 43909 3806.46 23277 475 86 1906.43
28 10 *2 * * 10.12 16.22 222.8 *2 * 76471 173753 39429 8933.26
30 3 18.03 23595 12139.43 26.58 39.60 736.4 18338 2476.20 5677 7582 5913 1803.36
30 8 * * * 12.50 26.14 420 *1 * 92013 65513 59022 20700.93
30 10 * * * 9.61 22.18 275.2 * * 132451 87457 77763 26269.46

3-BLOCKS

15 3 12.65 383 21.23 19.65 36.41 133 575 16.65 451 858 626 11.96
15 5 8.06 521 15.29 9.12 28.28 100.8 957 19.02 1099 710 520 16.23
15 8 8.84 375 9.91 9.41 13.59 34.2 551 9.06 888 533 304 7.62
20 3 15.01 5028 388.57 19.70 33.48 226.8 1600 65.60 1321 1774 1358 52.72
20 8 6.29 6892 400.83 7.49 20.10 85.8 7685 271.88 9019 1022 725 231.55
20 10 3.93 4606 195.19 4.31 10.14 53.2 9020 222.13 9038 2550 2133 186.67
25 3 15.91 13447 3549.53 20.48 41.62 409.2 5663 479.20 5694 2173 285 456.39
25 8 10.12 36990 4158.78 10.82 18.39 173.8 33855 1715.91 11662 6012 5359 1011.68
25 10 *3 * * 9.87 16.53 146.4 *4 * 72672 10985 10463 3178.88
28 3 16.44 19107 5852.49 20.82 38.65 386.4 5231 899.58 5201 5304 2507 775.14
28 8 *2 * * 11.88 26.41 274.4 *4 * 43053 9554 8710 5111.62
28 10 * * * 8.10 17.04 255.4 * * 69039 23206 19397 5571.86
30 3 18.12 26726 17905.67 21.95 43.93 591 26107 4102.11 14127 8740 6343 2032.55
30 8 * * * 10.07 30.16 301.4 * * 108583 95711 94371 21965.72
30 10 * * * 10.03 22.41 272.8 * * 64493 29936 23883 11593.95
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